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� We explored 4 complementary approaches for video fingerprinting:

– Two frame-based visual fingerprints (color correlogram and SIFTogram)

– Two temporal sequence-based fingerprints (audio & motion activity)

� Key question: How far can we go with coarse-grain fingerprints?

– Focus on common real-world transforms typical for video piracy detection

– Focus on speed, space efficiency, lack of false alarms

System Overview
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Fingerprints Fusion
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We focused on CBCD transforms that represent typical video 
piracy scenarios (i.e., ignore PIP and post-production edits) 

� T2: Picture in picture Type 1 (The original video is inserted in front) 

� T3: Insertions of pattern 

� T4: Strong re-encoding 

� T5: Change of gamma 

� T6: Decrease in quality -- This includes choosing randomly 3 
transformations from the following: Blur, change of gamma, frame
dropping, contrast, compression, ratio, white noise 

� T8: Post production -- This includes choosing randomly 3 transformations 
from the following: Crop, Shift, Contrast, caption (text insertion), flip 
(mirroring), Insertion of pattern, Picture in Picture type 2 (the original video 
is in the background) 

� T10: change to randomly choose 1 transformation from each of the 3 main 
categories. 

We focused on these 4 transforms
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Visual Fingerprint Extraction for Frame-Based Methods

� Sample 1 frame per second for visual feature extraction

� Throw out bad frames, normalize appearance of remaining frames

� Extract the relevant feature, i.e. color correlogram or SIFTogram

� Add reference content to the database for indexing
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Color Correlogram-based Fingerprints

� A color correlogram expresses how the spatial correlation                          
of colors changes within a local region neighborhood

– Captures color and local structure, some invariability to view point changes

– We use a “cross” formulation which also captures global layout & emphasizes the 
center of the image, while being invariant to flips

� Informally, a correlogram for an image is a table indexed by color pairs, 
where the d-th entry for row (i,j) specifies the probability of finding a pixel of 
color j at a distance d from a pixel of color i in this image

– We use simplified auto-correlogram formulation, which captures conditional 
probability of seeing given color within a certain distance of same color pixel

� We compute the auto-correlogram in a 166-dimensional quantized HSV 
color space, resulting in a 332-dimensional cross-CC feature vector

� Pros/cons for correlogram fingerprints: 

– Robust w.r.t. brightness changes, aspect ratio, small crops, flipping, compression

– Cons: non-linear intensity transforms (e.g., gamma), changes in hue, saturation
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Visual Word-based Fingerprints (SIFTograms)

� Histogram of SIFT-based Codewords

– We use U. of Amsterdam’s tools to detect 
interest points and extract SIFT descriptors 

– We build a codebook of visual words using k-
means clustering to quantize the SIFT features

• Harris-Laplace, SIFT descriptor, soft assignment

– We then compute a histogram of the quantized 
SIFT features (SIFTogram), making a global 
feature for each frame sampled at 1fps

– The # of codewords is the dimensionality of 
the feature vector, in our case, 1000

� “SIFTogram” is robust w.r.t. gamma, color, 
rotation, scale, blur, borders and some 
overlaid graphics

� Cons: compute intensive, space inefficient, 
does not handle compression well 

Figure: C.W. Ngo
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Temporal Fingerprint Extraction for Segment-Based Methods

� We apply this method to describe overall audio or motion activity

� We scan the audio/video as a time series of audio/visual features and detect “interesting 
points” along the feature trajectory (e.g., valleys, peaks, flat regions)

� We form overlapping segments covering multiple “events” on the trajectory, normalize the 
segments, and represent each with a compact fixed dimensionality descriptor based on 
uniform re-sampling of the segment (64-bytes)

� This process results in many overlapping fingerprint sequences of varying lengths, based 
on min/max segment duration constraints

� Robust w.r.t. color transforms, blur, noise, compression and geometric transforms 

� Doesn’t works well for short copied segments, or segments with little activity
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Fingerprint Matching

� For each test segment, find matching reference segments / frames

� For each reference video, collect all matching segments / frames and find the 
subset of matching segments that produces the best linear fit

� For each reference video, compute an overall matching score based on the 
matched segments / frames conforming with the computed linear fit params

� Determine copy / no copy status based on overall score threshold
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Indexing for Fast Nearest Neighbor Lookup

� We use FLANN (Fast Library for Approximate 
Nearest Neighbor) open source library to 
enable fast lookups of the fingerprints

– Authors: Marius Muja and David G. Lowe, Univ. of 
British Columbia

– http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

� Given the set to index, FLANN can auto-select 
algorithms (kd-tree, hierarchical k-means, 
hybrid) and parameters

� Speed gains of 50x compared to linear scan 
with color feature method enabled us to tune 
matching params for better performance

� SIFTogram lookup relies on indexing even more
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Performance Analysis

� We use NOFA profile as BALANCED profile turns out to be very similar:

– NDCR = Pmiss + β · RFA where β = CFA / (Cmiss · Rtarget) = 2 for BALANCED profile

– RFA = FP / Tqueries where Tqueries ≈ 7.3 hours for the 2009 dataset (201 queries)

– Therefore, NDCR ≈ Pmiss + 0.28 FP, or each false alarm increases NDCR by 0.28!

– Note that we can obtain trivial NDCR = 1.0 by submitting empty result set

– Therefore, BALANCED profile is essentially a “3-false-alarm profile”

� Our performance analysis is focused on:

– NOFA profile

– Optimal NDCR rather than actual NDCR (since most runs had actual NDCR>1)

– Transforms T3-T6 (typical for video piracy, esp. T6)  

– In some cases, we report aggregate performance over multiple transforms

• To compute meaningful optimal NDCR scores when aggregating across transforms, we 

modify the ground truth to map multiple transforms to a single virtual transform

• This forces evaluation script to use the same optimal threshold across all transforms
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Actual Threshold NDCR for Video-Only Task
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Why we use optimal NDCR rather than actual NDCR?

� NOFA penalty resulted in very high costs on actual threshold measure

– “balanced” profile also allows very few false alarms

� Ours are the only runs with scores less than the trivial NDCR score of 1!

IBM runs
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Comparison of Fingerprinting Approaches on CBCD 2008 Data

� Multimodal fusion approach consistently outperforms all constituent runs

� 2009 approaches dramatically improve over 2008 runs (2-3x improvement)

Performance on Video-Only TRECVID 2008 Data
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Component Runs Compared with Fused Runs on 2009 Data

2009 NOFA Video-Only and Audio-Only Runs
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� Performance on re-encoding worse than on 2008 data, all other transforms improve

� SIFTogram performs much better on 2009 than 2008, outperforms all else

� Fusion did not generalize (likely due to SIFTogram performance change)

� Overall, excellent performance on 3 of 4 target transforms
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For 2009, SIFTogram outperformed our fusion run on A+V task

2009 A+V Performance Across All Transforms
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Average NDCR over Transforms T3 -- T6
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Aggregated Performance on T3-T6 Target Transforms for Video-Only Task 

An “unofficial run” – 0.274 NDCR
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A+V: Average NDCR over Transforms 3-6
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Results for A+V Task on IBM’s Targeted Transforms T3-T6
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IBM had the best performance on T6 in the A+V task

Optimal Average NDCR for T6-related AV Transforms
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Each T6 query had 3 of the following types of transforms:  blur, change of gamma, frame dropping, 
contrast, compression, aspect ratio, white noise 

NDCR = .007
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Query Processing Time vs NDCR Over all A+V Queries
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Our Solution Provides a Good Trade-off Between Speed and Accuracy
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Conclusions

� Coarse-grain fingerprinting methods provide timely and highly accurate 
results on transforms commonly seen “in the wild”

– Perfect detection with 0 false alarms on most typical transforms (e.g., T6)

– Good trade-off between speed, storage, and accuracy

� Fusion methods that worked well on the 2008 test set did not transfer 
directly to 2009 data

– “Past results not necessarily an indicator of future performance”

– Need to consider early fusion methods

� It’s difficult to pick operating thresholds

– In deployment, they may have to be adjusted online, “in-situ”

� Using a toolbox of independent methods can be parallelized, but combining 
results for optimal detection is non-trivial


